Skip to content

Mode

Running mode.

The mode is simply the most common value. An approximate mode can be computed by setting the number of first unique values to count.

Parameters

  • k – defaults to 25

    Only the first k unique values will be included. If k equals -1, the exact mode is computed.

Attributes

  • name

Examples

>>> from river import stats

>>> X = ['sunny', 'cloudy', 'cloudy', 'rainy', 'rainy', 'rainy']
>>> mode = stats.Mode(k=2)
>>> for x in X:
...     print(mode.update(x).get())
sunny
sunny
cloudy
cloudy
cloudy
cloudy

>>> mode = stats.Mode(k=-1)
>>> for x in X:
...     print(mode.update(x).get())
sunny
sunny
cloudy
cloudy
cloudy
rainy

Methods

clone

Return a fresh estimator with the same parameters.

The clone has the same parameters but has not been updated with any data. This works by looking at the parameters from the class signature. Each parameter is either - recursively cloned if it's a River classes. - deep-copied via copy.deepcopy if not. If the calling object is stochastic (i.e. it accepts a seed parameter) and has not been seeded, then the clone will not be idempotent. Indeed, this method's purpose if simply to return a new instance with the same input parameters.

get

Return the current value of the statistic.

revert

Revert and return the called instance.

Parameters

  • x
update

Update and return the called instance.

Parameters

  • x