Skip to content

SEM

Running standard error of the mean using Welford's algorithm.

Parameters

  • ddof – defaults to 1

    Delta Degrees of Freedom. The divisor used in calculations is n - ddof, where n is the number of seen elements.

Attributes

  • n (int)

    Number of observations.

Examples

>>> import river.stats

>>> X = [3, 5, 4, 7, 10, 12]

>>> sem = river.stats.SEM()
>>> for x in X:
...     print(sem.update(x).get())
0.0
1.0
0.577350
0.853912
1.240967
1.447219

Methods

clone

Return a fresh estimator with the same parameters.

The clone has the same parameters but has not been updated with any data. This works by looking at the parameters from the class signature. Each parameter is either - recursively cloned if it's a River classes. - deep-copied via copy.deepcopy if not. If the calling object is stochastic (i.e. it accepts a seed parameter) and has not been seeded, then the clone will not be idempotent. Indeed, this method's purpose if simply to return a new instance with the same input parameters.

get

Return the current value of the statistic.

revert

Revert and return the called instance.

Parameters

  • x
  • w – defaults to 1.0
update

Update and return the called instance.

Parameters

  • x
  • w – defaults to 1.0
update_many

References