HDDM_W¶
Drift Detection Method based on Hoeffding's bounds with moving weighted average-test.
HDDM_W is an online drift detection method based on McDiarmid's bounds. HDDM_W uses the Exponentially Weighted Moving Average (EWMA) statistic as estimator.
Input: x
is an entry in a stream of bits, where 1 indicates error/failure and 0 represents correct/normal values.
For example, if a classifier's prediction \(y'\) is right or wrong w.r.t. the true target label \(y\):
-
0: Correct, \(y=y'\)
-
1: Error, \(y \neq y'\)
Implementation based on MOA.
Parameters¶
-
drift_confidence β defaults to
0.001
Confidence to the drift
-
warning_confidence β defaults to
0.005
Confidence to the warning
-
lambda_val β defaults to
0.05
The weight given to recent data. Smaller values mean less weight given to recent data.
-
two_sided_test β defaults to
False
If True, will monitor error increments and decrements (two-sided). By default will only monitor increments (one-sided).
Attributes¶
-
drift_detected
Concept drift alarm. True if concept drift is detected.
-
warning_detected
Examples¶
>>> import random
>>> from river import drift
>>> rng = random.Random(42)
>>> hddm_w = drift.HDDM_W()
>>> # Simulate a data stream where the first 1000 instances come from a uniform distribution
>>> # of 1's and 0's
>>> data_stream = rng.choices([0, 1], k=1000)
>>> # Increase the probability of 1's appearing in the next 1000 instances
>>> data_stream = data_stream + rng.choices([0, 1], k=1000, weights=[0.3, 0.7])
>>> print_warning = True
>>> # Update drift detector and verify if change is detected
>>> for i, x in enumerate(data_stream):
... _ = hddm_w.update(x)
... if hddm_w.warning_detected and print_warning:
... print(f"Warning detected at index {i}")
... print_warning = False
... if hddm_w.drift_detected:
... print(f"Change detected at index {i}")
... print_warning = True
Warning detected at index 451
Change detected at index 1077
Methods¶
update
Update the change detector with a single data point.
Parameters
- x (numbers.Number)
Returns
DriftDetector: self
References¶
-
FrΓas-Blanco I, del Campo-Γvila J, Ramos-Jimenez G, et al. Online and non-parametric drift detection methods based on Hoeffdingβs bounds. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(3): 810-823. ↩
-
Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer. MOA: Massive Online Analysis; Journal of Machine Learning Research 11: 1601-1604, 2010. ↩