PredClipper¶
Clips the target after predicting.
Parameters¶
-
regressor (base.Regressor)
Regressor model for which to clip the predictions.
-
y_min (float)
minimum value.
-
y_max (float)
maximum value.
Examples¶
>>> from river import linear_model
>>> from river import preprocessing
>>> dataset = (
... ({'a': 2, 'b': 4}, 80),
... ({'a': 3, 'b': 5}, 100),
... ({'a': 4, 'b': 6}, 120)
... )
>>> model = preprocessing.PredClipper(
... regressor=linear_model.LinearRegression(),
... y_min=0,
... y_max=200
... )
>>> for x, y in dataset:
... _ = model.learn_one(x, y)
>>> model.predict_one({'a': -100, 'b': -200})
0
>>> model.predict_one({'a': 50, 'b': 60})
200
Methods¶
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x (dict)
- y (numbers.Number)
- kwargs
Returns
Regressor: self
predict_one
Predict the output of features x
.
Parameters
- x (dict)
- kwargs
Returns
Number: The prediction.