HorizonAggMetric¶
Same as HorizonMetric
, but aggregates the result based on an provided function.
This allows, for instance, to measure the average performance of a forecasting model along the horizon.
Parameters¶
-
metric ('metrics.base.RegressionMetric')
A regression metric.
-
agg_func ('typing.Callable[[list[float]], float]')
A function that takes as input a list of floats and outputs a single float. You may want to
min
,max
, as well asstatistics.mean
andstatistics.median
.
Examples¶
This is used internally by the time_series.evaluate
function when you pass an agg_func
.
>>> import statistics
>>> from river import datasets
>>> from river import metrics
>>> from river import time_series
>>> metric = time_series.evaluate(
... dataset=datasets.AirlinePassengers(),
... model=time_series.HoltWinters(alpha=0.1),
... metric=metrics.MAE(),
... agg_func=statistics.mean,
... horizon=4
... )
>>> metric
mean(MAE): 42.901748
Methods¶
get
Return the current performance along the horizon.
Returns
typing.List[float]: The current performance.
update
Update the metric at each step along the horizon.
Parameters
- y_true ('typing.List[Number]')
- y_pred ('typing.List[Number]')
Returns
'ForecastingMetric': self