HorizonMetric¶
Measures performance at each time step ahead.
This allows to measure the performance of a model at each time step along the horizon. A copy of the provided regression metric is made for each time step.
Parameters¶
-
metric ('metrics.base.RegressionMetric')
A regression metric.
Examples¶
This is used internally by the time_series.evaluate
function.
>>> from river import datasets
>>> from river import metrics
>>> from river import time_series
>>> metric = time_series.evaluate(
... dataset=datasets.AirlinePassengers(),
... model=time_series.HoltWinters(alpha=0.1),
... metric=metrics.MAE(),
... horizon=4
... )
>>> metric
+1 MAE: 40.931286
+2 MAE: 42.667998
+3 MAE: 44.158092
+4 MAE: 43.849617
Methods¶
get
Return the current performance along the horizon.
Returns
typing.List[float]: The current performance.
update
Update the metric at each step along the horizon.
Parameters
- y_true ('typing.List[Number]')
- y_pred ('typing.List[Number]')
Returns
'ForecastingMetric': self