MonteCarloClassifierChain¶
Monte Carlo Sampling Classifier Chains.
Probabilistic Classifier Chains using Monte Carlo sampling, as described in 1.
m samples are taken from the posterior distribution. Therefore we need a probabilistic interpretation of the output, and thus, this is a particular variety of ProbabilisticClassifierChain.
Parameters¶
-
model (base.Classifier)
-
m (int) – defaults to
10
Number of samples to take from the posterior distribution.
-
seed (int) – defaults to
None
Random number generator seed for reproducibility.
Examples¶
>>> from river import feature_selection
>>> from river import linear_model
>>> from river import metrics
>>> from river import multioutput
>>> from river import preprocessing
>>> from river.datasets import synth
>>> dataset = synth.Logical(seed=42, n_tiles=100)
>>> model = multioutput.MonteCarloClassifierChain(
... model=linear_model.LogisticRegression(),
... m=10,
... seed=42
... )
>>> metric = metrics.multioutput.MicroAverage(metrics.Jaccard())
>>> for x, y in dataset:
... y_pred = model.predict_one(x)
... metric = metric.update(y, y_pred)
... model = model.learn_one(x, y)
>>> metric
MicroAverage(Jaccard): 54.75%
Methods¶
clear
D.clear() -> None. Remove all items from D.
copy
fromkeys
get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
Parameters
- key
- default – defaults to
None
items
D.items() -> a set-like object providing a view on D's items
keys
D.keys() -> a set-like object providing a view on D's keys
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x
- y
Returns
self
pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised.
Parameters
- key
- default – defaults to
<object object at 0x7f4af3dcd160>
popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError if D is empty.
predict_one
Predict the label of a set of features x
.
Parameters
- x
Returns
The predicted label.
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x
Returns
A dictionary that associates a probability which each label.
setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
Parameters
- key
- default – defaults to
None
update
D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
Parameters
- other – defaults to
()
- kwds
values
D.values() -> an object providing a view on D's values
References¶
-
Read, J., Martino, L., & Luengo, D. (2014). Efficient monte carlo methods for multi-dimensional learning with classifier chains. Pattern Recognition, 47(3), 1535-1546. ↩