Policy¶
Bandit policy base class.
Parameters¶
-
reward_obj (Union[river.stats.base.Statistic, river.metrics.base.Metric, river.proba.base.Distribution]) – defaults to
None
The reward object used to measure the performance of each arm. This can be a metric, a statistic, or a distribution.
-
burn_in – defaults to
0
The number of steps to use for the burn-in phase. Each arm is given the chance to be pulled during the burn-in phase. This is useful to mitigate selection bias.
Attributes¶
-
ranking
Return the list of arms in descending order of performance.
Methods¶
pull
Pull arm(s).
This method is a generator that yields the arm(s) that should be pulled. During the burn-in phase, all the arms that have not been pulled enough are yielded. Once the burn-in phase is over, the policy is allowed to choose the arm(s) that should be pulled. If you only want to pull one arm at a time during the burn-in phase, simply call next(policy.pull(arms))
.
Parameters
- arm_ids (List[Union[int, str]])
update
Update an arm's state.
Parameters
- arm_id
- reward_args
- reward_kwargs