SKL2RiverClassifier¶
Compatibility layer from scikit-learn to River for classification.
Parameters¶
-
estimator ('sklearn_base.ClassifierMixin')
A scikit-learn regressor which has a
partial_fit
method. -
classes ('list')
Examples¶
>>> from river import compat
>>> from river import evaluate
>>> from river import metrics
>>> from river import preprocessing
>>> from river import stream
>>> from sklearn import linear_model
>>> from sklearn import datasets
>>> dataset = stream.iter_sklearn_dataset(
... dataset=datasets.load_breast_cancer(),
... shuffle=True,
... seed=42
... )
>>> model = preprocessing.StandardScaler()
>>> model |= compat.convert_sklearn_to_river(
... estimator=linear_model.SGDClassifier(
... loss='log_loss',
... eta0=0.01,
... learning_rate='constant'
... ),
... classes=[False, True]
... )
>>> metric = metrics.LogLoss()
>>> evaluate.progressive_val_score(dataset, model, metric)
LogLoss: 0.199554
Methods¶
learn_many
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x
- y
Returns
self
predict_many
predict_one
Predict the label of a set of features x
.
Parameters
- x
Returns
The predicted label.
predict_proba_many
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x
Returns
A dictionary that associates a probability which each label.