Skip to content

PriorClassifier

Dummy classifier which uses the prior distribution.

The predict_one method will output the most common class whilst predict_proba_one will return the normalized class counts.

Attributes

  • counts (collections.Counter)

    Class counts.

  • n (int)

    Total number of seen instances.

Examples

Taken from example 2.1 from this page

>>> from river import dummy

>>> sentences = [
...     ('glad happy glad', '+'),
...     ('glad glad joyful', '+'),
...     ('glad pleasant', '+'),
...     ('miserable sad glad', 'βˆ’')
... ]

>>> model = dummy.PriorClassifier()

>>> for sentence, label in sentences:
...     model = model.learn_one(sentence, label)

>>> new_sentence = 'glad sad miserable pleasant glad'
>>> model.predict_one(new_sentence)
'+'
>>> model.predict_proba_one(new_sentence)
{'+': 0.75, 'βˆ’': 0.25}

Methods

learn_one

Update the model with a set of features x and a label y.

Parameters

  • x (dict)
  • y (Union[bool, str, int])

Returns

Classifier: self

predict_one

Predict the label of a set of features x.

Parameters

  • x (dict)
  • kwargs

Returns

typing.Union[bool, str, int, NoneType]: The predicted label.

predict_proba_one

Predict the probability of each label for a dictionary of features x.

Parameters

  • x (dict)

Returns

typing.Dict[typing.Union[bool, str, int], float]: A dictionary that associates a probability which each label.

References