LogLoss¶
Binary logarithmic loss.
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
requires_labels
Indicates if labels are required, rather than probabilities.
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Examples¶
>>> from river import metrics
>>> y_true = [True, False, False, True]
>>> y_pred = [0.9, 0.1, 0.2, 0.65]
>>> metric = metrics.LogLoss()
>>> for yt, yp in zip(y_true, y_pred):
... metric = metric.update(yt, yp)
... print(metric.get())
0.105360
0.105360
0.144621
0.216161
>>> metric
LogLoss: 0.216162
Methods¶
get
Return the current value of the metric.
is_better_than
revert
Revert the metric.
Parameters
- y_true (bool)
- y_pred (Union[bool, float, Dict[bool, float]])
- sample_weight – defaults to
1.0
update
Update the metric.
Parameters
- y_true (bool)
- y_pred (Union[bool, float, Dict[bool, float]])
- sample_weight – defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model