Precision¶
Binary precision score.
Parameters¶
-
cm – defaults to
None
This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.
-
pos_val – defaults to
True
Value to treat as "positive".
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
requires_labels
Indicates if labels are required, rather than probabilities.
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Examples¶
>>> from river import metrics
>>> y_true = [True, False, True, True, True]
>>> y_pred = [True, True, False, True, True]
>>> metric = metrics.Precision()
>>> for yt, yp in zip(y_true, y_pred):
... print(metric.update(yt, yp))
Precision: 100.00%
Precision: 50.00%
Precision: 50.00%
Precision: 66.67%
Precision: 75.00%
Methods¶
get
Return the current value of the metric.
is_better_than
revert
Revert the metric.
Parameters
- y_true (bool)
- y_pred (Union[bool, float, Dict[bool, float]])
- sample_weight – defaults to
1.0
update
Update the metric.
Parameters
- y_true (bool)
- y_pred (Union[bool, float, Dict[bool, float]])
- sample_weight – defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model (river.base.estimator.Estimator)