Skip to content

Recall

Binary recall score.

Parameters

  • cm – defaults to None

    This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.

  • pos_val – defaults to True

    Value to treat as "positive".

Attributes

  • bigger_is_better

    Indicate if a high value is better than a low one or not.

  • requires_labels

    Indicates if labels are required, rather than probabilities.

  • works_with_weights

    Indicate whether the model takes into consideration the effect of sample weights

Examples

>>> from river import metrics

>>> y_true = [True, False, True, True, True]
>>> y_pred = [True, True, False, True, True]

>>> metric = metrics.Recall()

>>> for yt, yp in zip(y_true, y_pred):
...     print(metric.update(yt, yp))
Recall: 100.00%
Recall: 100.00%
Recall: 50.00%
Recall: 66.67%
Recall: 75.00%

Methods

get

Return the current value of the metric.

is_better_than
revert

Revert the metric.

Parameters

  • y_true (bool)
  • y_pred (Union[bool, float, Dict[bool, float]])
  • sample_weight – defaults to 1.0
update

Update the metric.

Parameters

  • y_true (bool)
  • y_pred (Union[bool, float, Dict[bool, float]])
  • sample_weight – defaults to 1.0
works_with

Indicates whether or not a metric can work with a given model.

Parameters

  • model (river.base.estimator.Estimator)