MultiOutputClassificationMetric¶
Mother class for all multi-output classification metrics.
Parameters¶
-
cm (river.metrics.multioutput.confusion.MultiLabelConfusionMatrix) – defaults to
None
This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
requires_labels
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Methods¶
get
Return the current value of the metric.
is_better_than
revert
Revert the metric.
Parameters
- y_true (Dict[Union[str, int], Union[bool, str, int]])
- y_pred (Union[Dict[Union[str, int], Union[bool, str, int]], Dict[Union[str, int], Dict[Union[bool, str, int], float]]])
- sample_weight – defaults to
1.0
update
Update the metric.
Parameters
- y_true (Dict[Union[str, int], Union[bool, str, int]])
- y_pred (Union[Dict[Union[str, int], Union[bool, str, int]], Dict[Union[str, int], Dict[Union[bool, str, int], float]]])
- sample_weight – defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model (river.base.estimator.Estimator)