Skip to content

MultiOutputClassificationMetric

Mother class for all multi-output classification metrics.

Parameters

  • cm (river.metrics.multioutput.confusion.MultiLabelConfusionMatrix) – defaults to None

    This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.

Attributes

  • bigger_is_better

    Indicate if a high value is better than a low one or not.

  • requires_labels

  • works_with_weights

    Indicate whether the model takes into consideration the effect of sample weights

Methods

get

Return the current value of the metric.

is_better_than
revert

Revert the metric.

Parameters

  • y_true (Dict[Union[str, int], Union[bool, str, int]])
  • y_pred (Union[Dict[Union[str, int], Union[bool, str, int]], Dict[Union[str, int], Dict[Union[bool, str, int], float]]])
  • sample_weight – defaults to 1.0
update

Update the metric.

Parameters

  • y_true (Dict[Union[str, int], Union[bool, str, int]])
  • y_pred (Union[Dict[Union[str, int], Union[bool, str, int]], Dict[Union[str, int], Dict[Union[bool, str, int], float]]])
  • sample_weight – defaults to 1.0
works_with

Indicates whether or not a metric can work with a given model.

Parameters

  • model (river.base.estimator.Estimator)