ProbabilisticClassifierChain¶
Probabilistic Classifier Chains.
The Probabilistic Classifier Chains (PCC) 1 is a Bayes-optimal method based on the Classifier Chains (CC).
Consider the concept of chaining classifiers as searching a path in a binary tree whose leaf nodes are associated with a label \(y \in Y\). While CC searches only a single path in the aforementioned binary tree, PCC looks at each of the \(2^l\) paths, where \(l\) is the number of labels. This limits the applicability of the method to data sets with a small to moderate number of labels. The authors recommend no more than about 15 labels for real-world applications.
Parameters¶
- model (base.Classifier)
Examples¶
>>> from river import linear_model
>>> from river import metrics
>>> from river import multioutput
>>> from river.datasets import synth
>>> dataset = synth.Logical(seed=42, n_tiles=100)
>>> model = multioutput.ProbabilisticClassifierChain(
... model=linear_model.LogisticRegression()
... )
>>> metric = metrics.multioutput.MicroAverage(metrics.Jaccard())
>>> for x, y in dataset:
... y_pred = model.predict_one(x)
... metric = metric.update(y, y_pred)
... model = model.learn_one(x, y)
>>> metric
MicroAverage(Jaccard): 51.97%
Methods¶
clear
D.clear() -> None. Remove all items from D.
copy
fromkeys
get
D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.
Parameters
- key
- default β defaults to
None
items
D.items() -> a set-like object providing a view on D's items
keys
D.keys() -> a set-like object providing a view on D's keys
learn_one
Update the model with a set of features x
and the labels y
.
Parameters
- x
- y
- kwargs
Returns
self
pop
D.pop(k[,d]) -> v, remove specified key and return the corresponding value. If key is not found, d is returned if given, otherwise KeyError is raised.
Parameters
- key
- default β defaults to
<object object at 0x7fb8afa29160>
popitem
D.popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError if D is empty.
predict_one
Predict the labels of a set of features x
.
Parameters
- x (dict)
- kwargs
Returns
typing.Dict[typing.Hashable, bool]: The predicted labels.
predict_proba_one
Predict the probability of each label appearing given dictionary of features x
.
Parameters
- x
- kwargs
Returns
A dictionary that associates a probability which each label.
setdefault
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
Parameters
- key
- default β defaults to
None
update
D.update([E, ]**F) -> None. Update D from mapping/iterable E and F. If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
Parameters
- other β defaults to
()
- kwds
values
D.values() -> an object providing a view on D's values
References¶
-
Cheng, W., HΓΌllermeier, E., & Dembczynski, K. J. (2010). Bayes optimal multilabel classification via probabilistic classifier chains. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 279-286). ↩