Skip to content

BinaryFocalLoss

Binary focal loss.

This implements the "star" algorithm from the appendix of the focal loss paper.

Parameters

  • gamma โ€“ defaults to 2

  • beta โ€“ defaults to 1

Methods

call

Returns the loss.

Parameters

  • y_true
  • y_pred

Returns

The loss(es).

gradient

Return the gradient with respect to y_pred.

Parameters

  • y_true
  • y_pred

Returns

The gradient(s).

mean_func

Mean function.

This is the inverse of the link function. Typically, a loss function takes as input the raw output of a model. In the case of classification, the raw output would be logits. The mean function can be used to convert the raw output into a value that makes sense to the user, such as a probability.

Parameters

  • y_pred

Returns

The adjusted prediction(s).

References

  1. Lin, T.Y., Goyal, P., Girshick, R., He, K. and Dollรกr, P., 2017. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988)