Skip to content

FMClassifier

Factorization Machine for binary classification.

The model equation is defined as:

y^(x)=w0+j=1pwjxj+j=1pj=j+1pvj,vjxjxj

Where vj and vj are j and j latent vectors, respectively.

For more efficiency, this model automatically one-hot encodes strings features considering them as categorical variables.

Parameters

  • n_factors

    Default10

    Dimensionality of the factorization or number of latent factors.

  • weight_optimizer

    Typeoptim.base.Optimizer | None

    DefaultNone

    The sequential optimizer used for updating the feature weights. Note that the intercept is handled separately.

  • latent_optimizer

    Typeoptim.base.Optimizer | None

    DefaultNone

    The sequential optimizer used for updating the latent factors.

  • loss

    Typeoptim.losses.BinaryLoss | None

    DefaultNone

    The loss function to optimize for.

  • sample_normalization

    DefaultFalse

    Whether to divide each element of x by x's L2-norm.

  • l1_weight

    Default0.0

    Amount of L1 regularization used to push weights towards 0.

  • l2_weight

    Default0.0

    Amount of L2 regularization used to push weights towards 0.

  • l1_latent

    Default0.0

    Amount of L1 regularization used to push latent weights towards 0.

  • l2_latent

    Default0.0

    Amount of L2 regularization used to push latent weights towards 0.

  • intercept

    Default0.0

    Initial intercept value.

  • intercept_lr

    Typeoptim.base.Scheduler | float

    Default0.01

    Learning rate scheduler used for updating the intercept. An instance of optim.schedulers.Constant is used if a float is passed. No intercept will be used if this is set to 0.

  • weight_initializer

    Typeoptim.initializers.Initializer | None

    DefaultNone

    Weights initialization scheme. Defaults to optim.initializers.Zeros()`.

  • latent_initializer

    Typeoptim.initializers.Initializer | None

    DefaultNone

    Latent factors initialization scheme. Defaults to optim.initializers.Normal(mu=.0, sigma=.1, random_state=self.random_state)`.

  • clip_gradient

    Default1000000000000.0

    Clips the absolute value of each gradient value.

  • seed

    Typeint | None

    DefaultNone

    Randomization seed used for reproducibility.

Attributes

  • weights

    The current weights assigned to the features.

  • latents

    The current latent weights assigned to the features.

Examples

from river import facto

dataset = (
    ({'user': 'Alice', 'item': 'Superman'}, True),
    ({'user': 'Alice', 'item': 'Terminator'}, True),
    ({'user': 'Alice', 'item': 'Star Wars'}, True),
    ({'user': 'Alice', 'item': 'Notting Hill'}, False),
    ({'user': 'Alice', 'item': 'Harry Potter '}, True),
    ({'user': 'Bob', 'item': 'Superman'}, True),
    ({'user': 'Bob', 'item': 'Terminator'}, True),
    ({'user': 'Bob', 'item': 'Star Wars'}, True),
    ({'user': 'Bob', 'item': 'Notting Hill'}, False)
)

model = facto.FMClassifier(
    n_factors=10,
    seed=42,
)

for x, y in dataset:
    _ = model.learn_one(x, y)

model.predict_one({'Bob': 1, 'Harry Potter': 1})
True

Methods

debug_one

Debugs the output of the FM regressor.

Parameters

  • x'dict'
  • decimals'int' — defaults to 5

Returns

str: A table which explains the output.

learn_one

Update the model with a set of features x and a label y.

Parameters

  • x'dict'
  • y'base.typing.ClfTarget'
  • sample_weight — defaults to 1.0

Returns

Classifier: self

predict_one

Predict the label of a set of features x.

Parameters

  • x'dict'
  • kwargs

Returns

base.typing.ClfTarget | None: The predicted label.

predict_proba_one

Predict the probability of each label for a dictionary of features x.

Parameters

  • x

Returns

A dictionary that associates a probability which each label.