FMClassifier¶
Factorization Machine for binary classification.
The model equation is defined as:
Where
For more efficiency, this model automatically one-hot encodes strings features considering them as categorical variables.
Parameters¶
-
n_factors
Default →
10
Dimensionality of the factorization or number of latent factors.
-
weight_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the feature weights. Note that the intercept is handled separately.
-
latent_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the latent factors.
-
loss
Type → optim.losses.BinaryLoss | None
Default →
None
The loss function to optimize for.
-
sample_normalization
Default →
False
Whether to divide each element of
x
byx
's L2-norm. -
l1_weight
Default →
0.0
Amount of L1 regularization used to push weights towards 0.
-
l2_weight
Default →
0.0
Amount of L2 regularization used to push weights towards 0.
-
l1_latent
Default →
0.0
Amount of L1 regularization used to push latent weights towards 0.
-
l2_latent
Default →
0.0
Amount of L2 regularization used to push latent weights towards 0.
-
intercept
Default →
0.0
Initial intercept value.
-
intercept_lr
Type → optim.base.Scheduler | float
Default →
0.01
Learning rate scheduler used for updating the intercept. An instance of
optim.schedulers.Constant
is used if afloat
is passed. No intercept will be used if this is set to 0. -
weight_initializer
Type → optim.initializers.Initializer | None
Default →
None
Weights initialization scheme. Defaults to
optim.initializers.Zeros
()`. -
latent_initializer
Type → optim.initializers.Initializer | None
Default →
None
Latent factors initialization scheme. Defaults to
optim.initializers.Normal
(mu=.0, sigma=.1, random_state=self.random_state)`. -
clip_gradient
Default →
1000000000000.0
Clips the absolute value of each gradient value.
-
seed
Type → int | None
Default →
None
Randomization seed used for reproducibility.
Attributes¶
-
weights
The current weights assigned to the features.
-
latents
The current latent weights assigned to the features.
Examples¶
from river import facto
dataset = (
({'user': 'Alice', 'item': 'Superman'}, True),
({'user': 'Alice', 'item': 'Terminator'}, True),
({'user': 'Alice', 'item': 'Star Wars'}, True),
({'user': 'Alice', 'item': 'Notting Hill'}, False),
({'user': 'Alice', 'item': 'Harry Potter '}, True),
({'user': 'Bob', 'item': 'Superman'}, True),
({'user': 'Bob', 'item': 'Terminator'}, True),
({'user': 'Bob', 'item': 'Star Wars'}, True),
({'user': 'Bob', 'item': 'Notting Hill'}, False)
)
model = facto.FMClassifier(
n_factors=10,
seed=42,
)
for x, y in dataset:
_ = model.learn_one(x, y)
model.predict_one({'Bob': 1, 'Harry Potter': 1})
True
Methods¶
debug_one
Debugs the output of the FM regressor.
Parameters
- x — 'dict'
- decimals — 'int' — defaults to
5
Returns
str: A table which explains the output.
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x — 'dict'
- y — 'base.typing.ClfTarget'
- sample_weight — defaults to
1.0
Returns
Classifier: self
predict_one
Predict the label of a set of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x
Returns
A dictionary that associates a probability which each label.