ARFClassifier¶
Adaptive Random Forest classifier.
The 3 most important aspects of Adaptive Random Forest 1 are:
-
inducing diversity through re-sampling
-
inducing diversity through randomly selecting subsets of features for node splits
-
drift detectors per base tree, which cause selective resets in response to drifts
It also allows training background trees, which start training if a warning is detected and replace the active tree if the warning escalates to a drift.
Parameters¶
-
n_models
Type → int
Default →
10
Number of trees in the ensemble.
-
max_features
Type → bool | str | int
Default →
sqrt
Max number of attributes for each node split.
- Ifint
, then considermax_features
at each split.
- Iffloat
, thenmax_features
is a percentage andint(max_features * n_features)
features are considered per split.
- If "sqrt", thenmax_features=sqrt(n_features)
.
- If "log2", thenmax_features=log2(n_features)
.
- If None, thenmax_features=n_features
. -
lambda_value
Type → int
Default →
6
The lambda value for bagging (lambda=6 corresponds to Leveraging Bagging).
-
metric
Type → metrics.base.MultiClassMetric | None
Default →
None
Metric used to track trees performance within the ensemble. Defaults to
metrics.Accuracy
()`. -
disable_weighted_vote
Default →
False
If
True
, disables the weighted vote prediction. -
drift_detector
Type → base.DriftDetector | None
Default →
None
Drift Detection method. Set to None to disable Drift detection. Defaults to
drift.ADWIN
(delta=0.001)`. -
warning_detector
Type → base.DriftDetector | None
Default →
None
Warning Detection method. Set to None to disable warning detection. Defaults to
drift.ADWIN
(delta=0.01)`. -
grace_period
Type → int
Default →
50
[Tree parameter] Number of instances a leaf should observe between split attempts.
-
max_depth
Type → int | None
Default →
None
[Tree parameter] The maximum depth a tree can reach. If
None
, the tree will grow indefinitely. -
split_criterion
Type → str
Default →
info_gain
[Tree parameter] Split criterion to use.
- 'gini' - Gini
- 'info_gain' - Information Gain
- 'hellinger' - Hellinger Distance -
delta
Type → float
Default →
0.01
[Tree parameter] Allowed error in split decision, a value closer to 0 takes longer to decide.
-
tau
Type → float
Default →
0.05
[Tree parameter] Threshold below which a split will be forced to break ties.
-
leaf_prediction
Type → str
Default →
nba
[Tree parameter] Prediction mechanism used at leafs.
- 'mc' - Majority Class
- 'nb' - Naive Bayes
- 'nba' - Naive Bayes Adaptive -
nb_threshold
Type → int
Default →
0
[Tree parameter] Number of instances a leaf should observe before allowing Naive Bayes.
-
nominal_attributes
Type → list | None
Default →
None
[Tree parameter] List of Nominal attributes. If empty, then assume that all attributes are numerical.
-
splitter
Type → Splitter | None
Default →
None
[Tree parameter] The Splitter or Attribute Observer (AO) used to monitor the class statistics of numeric features and perform splits. Splitters are available in the
tree.splitter
module. Different splitters are available for classification and regression tasks. Classification and regression splitters can be distinguished by their propertyis_target_class
. This is an advanced option. Special care must be taken when choosing different splitters. By default,tree.splitter.GaussianSplitter
is used ifsplitter
isNone
. -
binary_split
Type → bool
Default →
False
[Tree parameter] If True, only allow binary splits.
-
min_branch_fraction
Type → float
Default →
0.01
[Tree parameter] The minimum percentage of observed data required for branches resulting from split candidates. To validate a split candidate, at least two resulting branches must have a percentage of samples greater than
min_branch_fraction
. This criterion prevents unnecessary splits when the majority of instances are concentrated in a single branch. -
max_share_to_split
Type → float
Default →
0.99
[Tree parameter] Only perform a split in a leaf if the proportion of elements in the majority class is smaller than this parameter value. This parameter avoids performing splits when most of the data belongs to a single class.
-
max_size
Type → float
Default →
100.0
[Tree parameter] Maximum memory (MB) consumed by the tree.
-
memory_estimate_period
Type → int
Default →
2000000
[Tree parameter] Number of instances between memory consumption checks.
-
stop_mem_management
Type → bool
Default →
False
[Tree parameter] If True, stop growing as soon as memory limit is hit.
-
remove_poor_attrs
Type → bool
Default →
False
[Tree parameter] If True, disable poor attributes to reduce memory usage.
-
merit_preprune
Type → bool
Default →
True
[Tree parameter] If True, enable merit-based tree pre-pruning.
-
seed
Type → int | None
Default →
None
Random seed for reproducibility.
Attributes¶
- models
Examples¶
from river import evaluate
from river import forest
from river import metrics
from river.datasets import synth
dataset = synth.ConceptDriftStream(
seed=42,
position=500,
width=40
).take(1000)
model = forest.ARFClassifier(seed=8, leaf_prediction="mc")
metric = metrics.Accuracy()
evaluate.progressive_val_score(dataset, model, metric)
Accuracy: 71.07%
Methods¶
learn_one
predict_one
Predict the label of a set of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x — 'dict'
Returns
dict[base.typing.ClfTarget, float]: A dictionary that associates a probability which each label.
-
Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bernhard Pfharinger, Geoff Holmes, Talel Abdessalem. Adaptive random forests for evolving data stream classification. In Machine Learning, DOI: 10.1007/s10994-017-5642-8, Springer, 2017. ↩