Skip to content

Recall

Binary recall score.

Parameters

  • cm

    DefaultNone

    This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.

  • pos_val

    DefaultTrue

    Value to treat as "positive".

Attributes

  • bigger_is_better

    Indicate if a high value is better than a low one or not.

  • requires_labels

    Indicates if labels are required, rather than probabilities.

  • works_with_weights

    Indicate whether the model takes into consideration the effect of sample weights

Examples

from river import metrics

y_true = [True, False, True, True, True]
y_pred = [True, True, False, True, True]

metric = metrics.Recall()

for yt, yp in zip(y_true, y_pred):
    print(metric.update(yt, yp))
Recall: 100.00%
Recall: 100.00%
Recall: 50.00%
Recall: 66.67%
Recall: 75.00%

Methods

get

Return the current value of the metric.

is_better_than

Indicate if the current metric is better than another one.

Parameters

  • other

revert

Revert the metric.

Parameters

  • y_true'bool'
  • y_pred'bool | float | dict[bool, float]'
  • sample_weight — defaults to 1.0

update

Update the metric.

Parameters

  • y_true'bool'
  • y_pred'bool | float | dict[bool, float]'
  • sample_weight — defaults to 1.0

works_with

Indicates whether or not a metric can work with a given model.

Parameters