Regression¶
Regression is about predicting a numeric output for a given sample. A labeled regression sample is made up of a bunch of features and a number. The number is usually continuous, but it may also be discrete. We'll use the Trump approval rating dataset as an example.
from river import datasets
dataset = datasets.TrumpApproval()
dataset
Donald Trump approval ratings.
This dataset was obtained by reshaping the data used by FiveThirtyEight for analyzing Donald
Trump's approval ratings. It contains 5 features, which are approval ratings collected by
5 polling agencies. The target is the approval rating from FiveThirtyEight's model. The goal of
this task is to see if we can reproduce FiveThirtyEight's model.
Name TrumpApproval
Task Regression
Samples 1,001
Features 6
Sparse False
Path /home/runner/work/river/river/river/datasets/trump_approval.csv.gz
This dataset is a streaming dataset which can be looped over.
for x, y in dataset:
pass
Let's take a look at the first sample.
x, y = next(iter(dataset))
x
{'ordinal_date': 736389,
'gallup': 43.843213,
'ipsos': 46.19925042857143,
'morning_consult': 48.318749,
'rasmussen': 44.104692,
'you_gov': 43.636914000000004}
A regression model's goal is to learn to predict a numeric target y
from a bunch of features x
. We'll attempt to do this with a nearest neighbors model.
from river import neighbors
model = neighbors.KNNRegressor()
model.predict_one(x)
0.0
The model hasn't been trained on any data, and therefore outputs a default value of 0.
The model can be trained on the sample, which will update the model's state.
model = model.learn_one(x, y)
If we try to make a prediction on the same sample, we can see that the output is different, because the model has learned something.
model.predict_one(x)
43.75505
Typically, an online model makes a prediction, and then learns once the ground truth reveals itself. The prediction and the ground truth can be compared to measure the model's correctness. If you have a dataset available, you can loop over it, make a prediction, update the model, and compare the model's output with the ground truth. This is called progressive validation.
from river import metrics
model = neighbors.KNNRegressor()
metric = metrics.MAE()
for x, y in dataset:
y_pred = model.predict_one(x)
model.learn_one(x, y)
metric.update(y, y_pred)
metric
MAE: 0.310353
This is a common way to evaluate an online model. In fact, there is a dedicated evaluate.progressive_val_score
function that does this for you.
from river import evaluate
model = neighbors.KNNRegressor()
metric = metrics.MAE()
evaluate.progressive_val_score(dataset, model, metric)
MAE: 0.310353
That concludes the getting started introduction to regression! You can now move on to the next steps.