QuantileFilter¶
Threshold anomaly filter.
Parameters¶
-
anomaly_detector
An anomaly detector.
-
q
Type → float
The quantile level above which to classify an anomaly score as anomalous.
-
protect_anomaly_detector
Default →
True
Indicates whether or not the anomaly detector should be updated when the anomaly score is anomalous. If the data contains sporadic anomalies, then the anomaly detector should likely not be updated. Indeed, if it learns the anomaly score, then it will slowly start to consider anomalous anomaly scores as normal. This might be desirable, for instance in the case of drift.
Attributes¶
- q
Examples¶
from river import anomaly
from river import compose
from river import datasets
from river import metrics
from river import preprocessing
model = compose.Pipeline(
preprocessing.MinMaxScaler(),
anomaly.QuantileFilter(
anomaly.HalfSpaceTrees(seed=42),
q=0.95
)
)
report = metrics.ClassificationReport()
for x, y in datasets.CreditCard().take(2000):
score = model.score_one(x)
is_anomaly = model['QuantileFilter'].classify(score)
model = model.learn_one(x)
report = report.update(y, is_anomaly)
report
Precision Recall F1 Support
<BLANKLINE>
0 99.95% 94.49% 97.14% 1998
1 0.90% 50.00% 1.77% 2
<BLANKLINE>
Macro 50.42% 72.25% 49.46%
Micro 94.45% 94.45% 94.45%
Weighted 99.85% 94.45% 97.05%
<BLANKLINE>
94.45% accuracy
Methods¶
classify
Classify an anomaly score as anomalous or not.
Parameters
- score — 'float'
Returns
bool: A boolean value indicating whether the anomaly score is anomalous or not.
learn_one
Update the anomaly filter and the underlying anomaly detector.
Parameters
- args
- learn_kwargs
Returns
self
score_one
Return an outlier score.
A high score is indicative of an anomaly. A low score corresponds to a normal observation.
Parameters
- args
- kwargs
Returns
An anomaly score. A high score is indicative of an anomaly. A low score corresponds a