SKL2RiverClassifier¶
Compatibility layer from scikit-learn to River for classification.
Parameters¶
-
estimator
Type → sklearn_base.ClassifierMixin
A scikit-learn regressor which has a
partial_fit
method. -
classes
Type → list
Examples¶
from river import compat
from river import evaluate
from river import metrics
from river import preprocessing
from river import stream
from sklearn import linear_model
from sklearn import datasets
dataset = stream.iter_sklearn_dataset(
dataset=datasets.load_breast_cancer(),
shuffle=True,
seed=42
)
model = preprocessing.StandardScaler()
model |= compat.convert_sklearn_to_river(
estimator=linear_model.SGDClassifier(
loss='log_loss',
eta0=0.01,
learning_rate='constant'
),
classes=[False, True]
)
metric = metrics.LogLoss()
evaluate.progressive_val_score(dataset, model, metric)
LogLoss: 0.198029
Methods¶
learn_many
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x
- y
Returns
self
predict_many
predict_one
Predict the label of a set of features x
.
Parameters
- x
Returns
The predicted label.
predict_proba_many
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x
Returns
A dictionary that associates a probability which each label.