LogisticRegression¶
Logistic regression.
This estimator supports learning with mini-batches. On top of the single instance methods, it provides the following methods: learn_many, predict_many, predict_proba_many. Each method takes as input a pandas.DataFrame where each column represents a feature.
It is generally a good idea to scale the data beforehand in order for the optimizer to converge. You can do this online with a preprocessing.StandardScaler.
Parameters¶
-
optimizer
Type → optim.base.Optimizer | None
Default →
NoneThe sequential optimizer used for updating the weights. Note that the intercept is handled separately.
-
loss
Type → optim.losses.BinaryLoss | None
Default →
NoneThe loss function to optimize for. Defaults to
optim.losses.Log. -
l2
Default →
0.0Amount of L2 regularization used to push weights towards 0. For now, only one type of penalty can be used. The joint use of L1 and L2 is not explicitly supported.
-
l1
Default →
0.0Amount of L1 regularization used to push weights towards 0. For now, only one type of penalty can be used. The joint use of L1 and L2 is not explicitly supported.
-
intercept_init
Default →
0.0Initial intercept value.
-
intercept_lr
Type → float | optim.base.Scheduler
Default →
0.01Learning rate scheduler used for updating the intercept. A
optim.schedulers.Constantis used if afloatis provided. The intercept is not updated when this is set to 0. -
clip_gradient
Default →
1000000000000.0Clips the absolute value of each gradient value.
-
initializer
Type → optim.base.Initializer | None
Default →
NoneWeights initialization scheme.
Attributes¶
-
weights
The current weights.
Examples¶
from river import datasets
from river import evaluate
from river import linear_model
from river import metrics
from river import optim
from river import preprocessing
dataset = datasets.Phishing()
model = (
preprocessing.StandardScaler() |
linear_model.LogisticRegression(optimizer=optim.SGD(.1))
)
metric = metrics.Accuracy()
evaluate.progressive_val_score(dataset, model, metric)
Accuracy: 88.96%
Methods¶
learn_many
Update the model with a mini-batch of features X and boolean targets y.
Parameters
- X — 'pd.DataFrame'
- y — 'pd.Series'
- w — 'float | pd.Series' — defaults to
1
Returns
MiniBatchClassifier: self
learn_one
Update the model with a set of features x and a label y.
Parameters
- x — 'dict'
- y — 'base.typing.ClfTarget'
- w — defaults to
1.0
Returns
Classifier: self
predict_many
Predict the outcome for each given sample.
Parameters
- X — 'pd.DataFrame'
Returns
pd.Series: The predicted labels.
predict_one
Predict the label of a set of features x.
Parameters
- x — 'dict'
- kwargs
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_many
Predict the outcome probabilities for each given sample.
Parameters
- X — 'pd.DataFrame'
Returns
pd.DataFrame: A dataframe with probabilities of True and False for each sample.
predict_proba_one
Predict the probability of each label for a dictionary of features x.
Parameters
- x
Returns
A dictionary that associates a probability which each label.