Skip to content

WeightedJaccard

Weighted average Jaccard score.

Parameters

  • cm

    Typeconfusion.ConfusionMatrix | None

    DefaultNone

    This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.

Attributes

  • bigger_is_better

    Indicate if a high value is better than a low one or not.

  • requires_labels

    Indicates if labels are required, rather than probabilities.

  • works_with_weights

    Indicate whether the model takes into consideration the effect of sample weights

Examples

from river import metrics

y_true = [0, 1, 2, 2, 2]
y_pred = [0, 0, 2, 2, 1]

metric = metrics.WeightedJaccard()

for yt, yp in zip(y_true, y_pred):
    print(metric.update(yt, yp))
WeightedJaccard: 100.00%
WeightedJaccard: 25.00%
WeightedJaccard: 50.00%
WeightedJaccard: 62.50%
WeightedJaccard: 50.00%

Methods

get

Return the current value of the metric.

is_better_than

Indicate if the current metric is better than another one.

Parameters

  • other

revert

Revert the metric.

Parameters

  • y_true
  • y_pred
  • sample_weight — defaults to 1.0

update

Update the metric.

Parameters

  • y_true
  • y_pred
  • sample_weight — defaults to 1.0

works_with

Indicates whether or not a metric can work with a given model.

Parameters