MultiLabelConfusionMatrix¶
Multi-label confusion matrix.
Under the hood, this stores one metrics.ConfusionMatrix
for each output.
Examples¶
from river import metrics
cm = metrics.multioutput.MultiLabelConfusionMatrix()
y_true = [
{0: False, 1: True, 2: True},
{0: True, 1: True, 2: False}
]
y_pred = [
{0: True, 1: True, 2: True},
{0: True, 1: False, 2: False}
]
for yt, yp in zip(y_true, y_pred):
cm = cm.update(yt, yp)
cm
0
False True
False 0 1
True 0 1
<BLANKLINE>
1
False True
False 0 0
True 1 1
<BLANKLINE>
2
False True
False 1 0
True 0 1