Var¶
Running variance using Welford's algorithm.
Parameters¶
-
ddof
Default →
1
Delta Degrees of Freedom. The divisor used in calculations is
n - ddof
, wheren
represents the number of seen elements.
Attributes¶
-
mean
It is necessary to calculate the mean of the data in order to calculate its variance.
Examples¶
from river import stats
X = [3, 5, 4, 7, 10, 12]
var = stats.Var()
for x in X:
var.update(x)
print(var.get())
0.0
2.0
1.0
2.916666
7.7
12.56666
You can measure a rolling variance by using a utils.Rolling
wrapper:
from river import utils
X = [1, 4, 2, -4, -8, 0]
rvar = utils.Rolling(stats.Var(ddof=1), window_size=3)
for x in X:
rvar.update(x)
print(rvar.get())
0.0
4.5
2.333333
17.333333
25.333333
16.0
Methods¶
get
Return the current value of the statistic.
revert
update
Update and return the called instance.
Parameters
- x — 'numbers.Number'
- w — defaults to
1.0
update_many
Notes¶
The outcomes of the incremental and parallel updates are consistent with numpy's batch processing when \(\text{ddof} \le 1\).
-
Chan, T.F., Golub, G.H. and LeVeque, R.J., 1983. Algorithms for computing the sample variance: Analysis and recommendations. The American Statistician, 37(3), pp.242-247. ↩
-
Schubert, E. and Gertz, M., 2018, July. Numerically stable parallel computation of (co-)variance. In Proceedings of the 30th International Conference on Scientific and Statistical Database Management (pp. 1-12). ↩