NoChangeClassifier¶
Dummy classifier which returns the last class seen.
The predict_one method will output the last class seen whilst predict_proba_one will return 1 for the last class seen and 0 for the others.
Attributes¶
-
last_class
The last class seen.
-
classes
The set of classes seen.
Examples¶
Taken from example 2.1 from this page.
import pprint
from river import dummy
sentences = [
('glad happy glad', '+'),
('glad glad joyful', '+'),
('glad pleasant', '+'),
('miserable sad glad', '−')
]
model = dummy.NoChangeClassifier()
for sentence, label in sentences:
model.learn_one(sentence, label)
new_sentence = 'glad sad miserable pleasant glad'
model.predict_one(new_sentence)
'−'
pprint.pprint(model.predict_proba_one(new_sentence))
{'+': 0, '−': 1}
Methods¶
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x — 'dict'
- y — 'base.typing.ClfTarget'
predict_one
Predict the label of a set of features x
.
Parameters
- x — 'dict'
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x — 'dict'
Returns
dict[base.typing.ClfTarget, float]: A dictionary that associates a probability which each label.