EWARegressor¶
Exponentially Weighted Average regressor.
Parameters¶
-
models
Type → list[base.Regressor]
The regressors to hedge.
-
loss
Type → optim.losses.RegressionLoss | None
Default →
None
The loss function that has to be minimized. Defaults to
optim.losses.Squared
. -
learning_rate
Default →
0.5
The learning rate by which the model weights are multiplied at each iteration.
Attributes¶
- models
Examples¶
from river import datasets
from river import ensemble
from river import evaluate
from river import linear_model
from river import metrics
from river import optim
from river import preprocessing
from river import stream
optimizers = [
optim.SGD(0.01),
optim.RMSProp(),
optim.AdaGrad()
]
for optimizer in optimizers:
dataset = datasets.TrumpApproval()
metric = metrics.MAE()
model = (
preprocessing.StandardScaler() |
linear_model.LinearRegression(
optimizer=optimizer,
intercept_lr=.1
)
)
print(optimizer, evaluate.progressive_val_score(dataset, model, metric))
SGD MAE: 0.558735
RMSProp MAE: 0.522449
AdaGrad MAE: 0.477289
dataset = datasets.TrumpApproval()
metric = metrics.MAE()
hedge = (
preprocessing.StandardScaler() |
ensemble.EWARegressor(
[
linear_model.LinearRegression(optimizer=o, intercept_lr=.1)
for o in optimizers
],
learning_rate=0.005
)
)
evaluate.progressive_val_score(dataset, hedge, metric)
MAE: 0.496298
Methods¶
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x
- y
learn_predict_one
predict_one
Predict the output of features x
.
Parameters
- x
Returns
The prediction.