MiniBatchRegressor¶
A regressor that can operate on mini-batches.
Methods¶
clone
Return a fresh estimator with the same parameters.
The clone has the same parameters but has not been updated with any data. This works by looking at the parameters from the class signature. Each parameter is either - recursively cloned if it's a River classes. - deep-copied via copy.deepcopy
if not. If the calling object is stochastic (i.e. it accepts a seed parameter) and has not been seeded, then the clone will not be idempotent. Indeed, this method's purpose if simply to return a new instance with the same input parameters.
learn_many
Update the model with a mini-batch of features X
and boolean targets y
.
Parameters
- X (pandas.core.frame.DataFrame)
- y (pandas.core.series.Series)
- kwargs
Returns
MiniBatchRegressor: self
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x (dict)
- y (numbers.Number)
- kwargs
Returns
Regressor: self
predict_many
Predict the outcome for each given sample.
Parameters --------- X A dataframe of features.
Parameters
- X (pandas.core.frame.DataFrame)
Returns
Series: The predicted outcomes.
predict_one
Predicts the target value of a set of features x
.
Parameters
- x (dict)
Returns
Number: The prediction.