TargetTransformRegressor¶
Modifies the target before training.
The user is expected to check that func
and inverse_func
are coherent with each other.
Parameters¶
-
regressor (base.Regressor)
Regression model to wrap.
-
func (
) A function modifying the target before training.
-
inverse_func (
) A function to return to the target's original space.
Examples¶
>>> import math
>>> from river import compose
>>> from river import datasets
>>> from river import evaluate
>>> from river import linear_model
>>> from river import metrics
>>> from river import preprocessing
>>> dataset = datasets.TrumpApproval()
>>> model = (
... preprocessing.StandardScaler() |
... compose.TargetTransformRegressor(
... regressor=linear_model.LinearRegression(intercept_lr=0.15),
... func=math.log,
... inverse_func=math.exp
... )
... )
>>> metric = metrics.MSE()
>>> evaluate.progressive_val_score(dataset, model, metric)
MSE: 8.759624
Methods¶
clone
Return a fresh estimator with the same parameters.
The clone has the same parameters but has not been updated with any data. This works by looking at the parameters from the class signature. Each parameter is either - recursively cloned if it's a River classes. - deep-copied via copy.deepcopy
if not. If the calling object is stochastic (i.e. it accepts a seed parameter) and has not been seeded, then the clone will not be idempotent. Indeed, this method's purpose if simply to return a new instance with the same input parameters.
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x (dict)
- y (numbers.Number)
Returns
Regressor: self
predict_one
Predicts the target value of a set of features x
.
Parameters
- x (dict)
Returns
Number: The prediction.