Metrics¶
A container class for handling multiple metrics at once.
Parameters¶
-
metrics
-
str_sep – defaults to
,
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
requires_labels
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Methods¶
append
S.append(value) -- append value to the end of the sequence
Parameters
- item
clear
S.clear() -> None -- remove all items from S
clone
Return a fresh estimator with the same parameters.
The clone has the same parameters but has not been updated with any data. This works by looking at the parameters from the class signature. Each parameter is either - recursively cloned if it's a River classes. - deep-copied via copy.deepcopy
if not. If the calling object is stochastic (i.e. it accepts a seed parameter) and has not been seeded, then the clone will not be idempotent. Indeed, this method's purpose if simply to return a new instance with the same input parameters.
copy
count
S.count(value) -> integer -- return number of occurrences of value
Parameters
- item
extend
S.extend(iterable) -- extend sequence by appending elements from the iterable
Parameters
- other
get
Return the current value of the metric.
index
S.index(value, [start, [stop]]) -> integer -- return first index of value. Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
Parameters
- item
- args
insert
S.insert(index, value) -- insert value before index
Parameters
- i
- item
is_better_than
pop
S.pop([index]) -> item -- remove and return item at index (default last). Raise IndexError if list is empty or index is out of range.
Parameters
- i – defaults to
-1
remove
S.remove(value) -- remove first occurrence of value. Raise ValueError if the value is not present.
Parameters
- item
reverse
S.reverse() -- reverse IN PLACE
revert
Revert the metric.
Parameters
- y_true
- y_pred
- sample_weight – defaults to
1.0
sort
update
Update the metric.
Parameters
- y_true
- y_pred
- sample_weight – defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model (river.base.estimator.Estimator)