Skip to content

RMSSTD

Root Mean Squared Standard Deviation.

This is the square root of the pooled sample variance of all the attributes, which measures only the compactness of found clusters.

Attributes

  • bigger_is_better

    Indicates if a high value is better than a low one or not.

Examples

>>> from river import cluster
>>> from river import stream
>>> from river import metrics

>>> X = [
...     [1, 2],
...     [1, 4],
...     [1, 0],
...     [4, 2],
...     [4, 4],
...     [4, 0],
...     [-2, 2],
...     [-2, 4],
...     [-2, 0]
... ]

>>> k_means = cluster.KMeans(n_clusters=3, halflife=0.4, sigma=3, seed=0)
>>> metric = metrics.cluster.RMSSTD()

>>> for x, _ in stream.iter_array(X):
...     k_means = k_means.learn_one(x)
...     y_pred = k_means.predict_one(x)
...     metric = metric.update(x, y_pred, k_means.centers)

>>> metric
RMSSTD: 1.623486

Methods

get

Return the current value of the metric.

revert

Revert the metric.

Parameters

  • x
  • y_pred
  • centers
  • sample_weight – defaults to 1.0
update

Update the metric.

Parameters

  • x
  • y_pred
  • centers
  • sample_weight – defaults to 1.0
works_with

Indicates whether or not a metric can work with a given model.

Parameters

  • model (river.base.estimator.Estimator)

References


  1. Halkidi, M., Batistakis, Y. and Vazirgiannis, M. (2001). On Clustering Validation Techniques. Journal of Intelligent Information Systems, 17, 107 - 145. DOI: 10.1023/a:1012801612483.