Skip to content

iter_csv

Iterates over rows from a CSV file.

Reading CSV files can be quite slow. If, for whatever reason, you're going to loop through the same file multiple times, then we recommend that you to use the stream.Cache utility.

Parameters

  • filepath_or_buffer

    Either a string indicating the location of a file, or a buffer object that has a read method.

  • target (Union[str, List[str]]) – defaults to None

    A single target column is assumed if a string is passed. A multiple output scenario is assumed if a list of strings is passed. A None value will be assigned to each y if this parameter is omitted.

  • converters (dict) – defaults to None

    A dict mapping feature names to callables used to parse their associated values.

  • parse_dates (dict) – defaults to None

    A dict mapping feature names to a format passed to the datetime.datetime.strptime method.

  • drop (List[str]) – defaults to None

    Fields to ignore.

  • drop_nones – defaults to False

    Whether or not to drop fields where the value is a None.

  • fraction – defaults to 1.0

    Sampling fraction.

  • compression – defaults to infer

    For on-the-fly decompression of on-disk data. If this is set to 'infer' and filepath_or_buffer is a path, then the decompression method is inferred for the following extensions: '.gz', '.zip'.

  • seed (int) – defaults to None

    If specified, the sampling will be deterministic.

  • field_size_limit (int) – defaults to None

    If not None, this will be passed to the csv.field_size_limit function.

  • kwargs

    All other keyword arguments are passed to the underlying csv.DictReader.

Examples

Although this function is designed to handle different kinds of inputs, the most common use case is to read a file on the disk. We'll first create a little CSV file to illustrate.

>>> tv_shows = '''name,year,rating
... Planet Earth II,2016,9.5
... Planet Earth,2006,9.4
... Band of Brothers,2001,9.4
... Breaking Bad,2008,9.4
... Chernobyl,2019,9.4
... '''
>>> with open('tv_shows.csv', mode='w') as f:
...     _ = f.write(tv_shows)

We can now go through the rows one by one. We can use the converters parameter to cast the rating field value as a float. We can also convert the year to a datetime via the parse_dates parameter.

>>> from river import stream

>>> params = {
...     'converters': {'rating': float},
...     'parse_dates': {'year': '%Y'}
... }
>>> for x, y in stream.iter_csv('tv_shows.csv', **params):
...     print(x, y)
{'name': 'Planet Earth II', 'year': datetime.datetime(2016, 1, 1, 0, 0), 'rating': 9.5} None
{'name': 'Planet Earth', 'year': datetime.datetime(2006, 1, 1, 0, 0), 'rating': 9.4} None
{'name': 'Band of Brothers', 'year': datetime.datetime(2001, 1, 1, 0, 0), 'rating': 9.4} None
{'name': 'Breaking Bad', 'year': datetime.datetime(2008, 1, 1, 0, 0), 'rating': 9.4} None
{'name': 'Chernobyl', 'year': datetime.datetime(2019, 1, 1, 0, 0), 'rating': 9.4} None

The value of y is always None because we haven't provided a value for the target parameter. Here is an example where a target is provided:

>>> dataset = stream.iter_csv('tv_shows.csv', target='rating', **params)
>>> for x, y in dataset:
...     print(x, y)
{'name': 'Planet Earth II', 'year': datetime.datetime(2016, 1, 1, 0, 0)} 9.5
{'name': 'Planet Earth', 'year': datetime.datetime(2006, 1, 1, 0, 0)} 9.4
{'name': 'Band of Brothers', 'year': datetime.datetime(2001, 1, 1, 0, 0)} 9.4
{'name': 'Breaking Bad', 'year': datetime.datetime(2008, 1, 1, 0, 0)} 9.4
{'name': 'Chernobyl', 'year': datetime.datetime(2019, 1, 1, 0, 0)} 9.4

Finally, let's delete the example file.

>>> import os; os.remove('tv_shows.csv')