River2SKLTransformer¶
Compatibility layer from River to scikit-learn for transformation.
Parameters¶
-
river_estimator
Type → base.Transformer
Methods¶
fit
Fits to an entire dataset contained in memory.
Parameters
- X
- y — defaults to
None
Returns
self
fit_transform
Fit to data, then transform it.
Fits transformer to X
and y
with optional parameters fit_params
and returns a transformed version of X
.
Parameters
- X
- y — defaults to
None
- fit_params
Returns
ndarray array of shape (n_samples, n_features_new)
get_metadata_routing
Get metadata routing of this object.
Please check :ref:User Guide <metadata_routing>
on how the routing mechanism works.
Returns
MetadataRequest
get_params
Get parameters for this estimator.
Parameters
- deep — defaults to
True
Returns
dict
partial_fit
Fits incrementally on a portion of a dataset.
Parameters
- X
- y — defaults to
None
Returns
self
set_output
Set output container.
See :ref:sphx_glr_auto_examples_miscellaneous_plot_set_output.py
for an example on how to use the API.
Parameters
- transform — defaults to
None
Returns
estimator instance
set_params
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as :class:~sklearn.pipeline.Pipeline
). The latter have parameters of the form <component>__<parameter>
so that it's possible to update each component of a nested object.
Parameters
- params
Returns
estimator instance
transform
Predicts the target of an entire dataset contained in memory.
Parameters
- X
Returns
Transformed output.