FwFMRegressor¶
Field-weighted Factorization Machine for regression.
The model equation is defined as:
Where \(f_j\) and \(f_{j'}\) are \(j\) and \(j'\) fields, respectively, and \(\mathbf{v}_j\) and \(\mathbf{v}_{j'}\) are \(j\) and \(j'\) latent vectors, respectively.
For more efficiency, this model automatically one-hot encodes strings features considering them as categorical variables. Field names are inferred from feature names by taking everything before the first underscore: feature_name.split('_')[0]
.
Parameters¶
-
n_factors
Default →
10
Dimensionality of the factorization or number of latent factors.
-
weight_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the feature weights. Note that the intercept is handled separately.
-
latent_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the latent factors.
-
int_weight_optimizer
Type → optim.base.Optimizer | None
Default →
None
The sequential optimizer used for updating the field pairs interaction weights.
-
loss
Type → optim.losses.RegressionLoss | None
Default →
None
The loss function to optimize for.
-
sample_normalization
Default →
False
Whether to divide each element of
x
byx
's L2-norm. -
l1_weight
Default →
0.0
Amount of L1 regularization used to push weights towards 0.
-
l2_weight
Default →
0.0
Amount of L2 regularization used to push weights towards 0.
-
l1_latent
Default →
0.0
Amount of L1 regularization used to push latent weights towards 0.
-
l2_latent
Default →
0.0
Amount of L2 regularization used to push latent weights towards 0.
-
intercept
Default →
0.0
Initial intercept value.
-
intercept_lr
Type → optim.base.Scheduler | float
Default →
0.01
Learning rate scheduler used for updating the intercept. An instance of
optim.schedulers.Constant
is used if afloat
is passed. No intercept will be used if this is set to 0. -
weight_initializer
Type → optim.initializers.Initializer | None
Default →
None
Weights initialization scheme. Defaults to
optim.initializers.Zeros
()`. -
latent_initializer
Type → optim.initializers.Initializer | None
Default →
None
Latent factors initialization scheme. Defaults to
optim.initializers.Normal
(mu=.0, sigma=.1, random_state=self.random_state)`. -
clip_gradient
Default →
1000000000000.0
Clips the absolute value of each gradient value.
-
seed
Type → int | None
Default →
None
Randomization seed used for reproducibility.
Attributes¶
-
weights
The current weights assigned to the features.
-
latents
The current latent weights assigned to the features.
-
interaction_weights
The current interaction strengths of field pairs.
Examples¶
from river import facto
dataset = (
({'user': 'Alice', 'item': 'Superman'}, 8),
({'user': 'Alice', 'item': 'Terminator'}, 9),
({'user': 'Alice', 'item': 'Star Wars'}, 8),
({'user': 'Alice', 'item': 'Notting Hill'}, 2),
({'user': 'Alice', 'item': 'Harry Potter '}, 5),
({'user': 'Bob', 'item': 'Superman'}, 8),
({'user': 'Bob', 'item': 'Terminator'}, 9),
({'user': 'Bob', 'item': 'Star Wars'}, 8),
({'user': 'Bob', 'item': 'Notting Hill'}, 2)
)
model = facto.FwFMRegressor(
n_factors=10,
intercept=5,
seed=42,
)
for x, y in dataset:
model.learn_one(x, y)
model.predict_one({'Bob': 1, 'Harry Potter': 1})
5.236501
report = model.debug_one({'Bob': 1, 'Harry Potter': 1})
print(report)
Name Value Weight Contribution
Intercept 1.00000 5.23426 5.23426
Bob(Harry Potter) - Harry Potter(Bob) 1.00000 0.00224 0.00224
Harry Potter 1.00000 0.00000 0.00000
Bob 1.00000 0.00000 0.00000
Methods¶
debug_one
Debugs the output of the FM regressor.
Parameters
- x — 'dict'
- decimals — 'int' — defaults to
5
Returns
str: A table which explains the output.
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x — 'dict'
- y — 'base.typing.RegTarget'
- w — defaults to
1.0
predict_one
Predict the output of features x
.
Parameters
- x
Returns
The prediction.
-
Junwei Pan, Jian Xu, Alfonso Lobos Ruiz, Wenliang Zhao, Shengjun Pan, Yu Sun, and Quan Lu, 2018, April. Field-weighted Factorization Machines for Click-Through Rate Prediction in Display Advertising. In Proceedings of the 2018 World Wide Web Conference on World Wide Web. International World Wide Web Conferences Steering Committee, (pp. 1349–1357). ↩