SampleAverage¶
Sample-average wrapper.
The provided metric is evaluate on each sample. The arithmetic average over all the samples is returned. This is equivalent to using average='samples'
in scikit-learn.
Parameters¶
-
metric
A classification or a regression metric.
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
metric
Gives access to the wrapped metric.
-
requires_labels
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Examples¶
from river import metrics
y_true = [
{0: False, 1: True, 2: True},
{0: True, 1: True, 2: False}
]
y_pred = [
{0: True, 1: True, 2: True},
{0: True, 1: False, 2: False}
]
sample_jaccard = metrics.multioutput.SampleAverage(metrics.Jaccard())
for yt, yp in zip(y_true, y_pred):
sample_jaccard.update(yt, yp)
sample_jaccard
SampleAverage(Jaccard): 58.33%
Methods¶
get
Return the current value of the metric.
is_better_than
Indicate if the current metric is better than another one.
Parameters
- other
revert
Revert the metric.
Parameters
- y_true
- y_pred
- w — defaults to
1.0
update
Update the metric.
Parameters
- y_true
- y_pred
- w — defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model — 'base.Estimator'