Skip to content

BernoulliNB

Bernoulli Naive Bayes.

Bernoulli Naive Bayes model learns from occurrences between features such as word counts and discrete classes. The input vector must contain positive values, such as counts or TF-IDF values.

Parameters

  • alpha

    Default1.0

    Additive (Laplace/Lidstone) smoothing parameter (use 0 for no smoothing).

  • true_threshold

    Default0.0

    Threshold for binarizing (mapping to booleans) features.

Attributes

  • class_counts (collections.Counter)

    Number of times each class has been seen.

  • feature_counts (collections.defaultdict)

    Total frequencies per feature and class.

Examples

import pandas as pd
from river import compose
from river import feature_extraction
from river import naive_bayes

docs = [
    ("Chinese Beijing Chinese", "yes"),
    ("Chinese Chinese Shanghai", "yes"),
    ("Chinese Macao", "yes"),
    ("Tokyo Japan Chinese", "no")
]

model = compose.Pipeline(
    ("tokenize", feature_extraction.BagOfWords(lowercase=False)),
    ("nb", naive_bayes.BernoulliNB(alpha=1))
)

for sentence, label in docs:
    model.learn_one(sentence, label)

model["nb"].p_class("yes")
0.75
model["nb"].p_class("no")
0.25

model.predict_proba_one("test")
{'yes': 0.883..., 'no': 0.116...}

model.predict_one("test")
'yes'

You can train the model and make predictions in mini-batch mode using the class methods learn_many and predict_many.

df_docs = pd.DataFrame(docs, columns = ["docs", "y"])

X = pd.Series([
   "Chinese Beijing Chinese",
   "Chinese Chinese Shanghai",
   "Chinese Macao",
   "Tokyo Japan Chinese"
])

y = pd.Series(["yes", "yes", "yes", "no"])

model = compose.Pipeline(
    ("tokenize", feature_extraction.BagOfWords(lowercase=False)),
    ("nb", naive_bayes.BernoulliNB(alpha=1))
)

model.learn_many(X, y)

unseen = pd.Series(["Taiwanese Taipei", "Chinese Shanghai"])

model.predict_proba_many(unseen)
         no       yes
0  0.116846  0.883154
1  0.047269  0.952731

model.predict_many(unseen)
0    yes
1    yes
dtype: object

Methods

joint_log_likelihood

Computes the joint log likelihood of input features.

Parameters

  • x'dict'

Returns

float: Mapping between classes and joint log likelihood.

joint_log_likelihood_many

Computes the joint log likelihood of input features.

Parameters

  • X'pd.DataFrame'

Returns

pd.DataFrame: Input samples joint log likelihood.

learn_many

Learn from a batch of count vectors.

Parameters

  • X'pd.DataFrame'
  • y'pd.Series'

learn_one

Updates the model with a single observation.

Parameters

  • x'dict'
  • y'base.typing.ClfTarget'

p_class
p_class_many
p_feature_given_class
predict_many

Predict the outcome for each given sample.

Parameters

  • X'pd.DataFrame'

Returns

pd.Series: The predicted labels.

predict_one

Predict the label of a set of features x.

Parameters

  • x'dict'
  • kwargs

Returns

base.typing.ClfTarget | None: The predicted label.

predict_proba_many

Return probabilities using the log-likelihoods in mini-batchs setting.

Parameters

  • X'pd.DataFrame'

predict_proba_one

Return probabilities using the log-likelihoods.

Parameters

  • x'dict'