River2SKLClassifier¶
Compatibility layer from River to scikit-learn for classification.
Parameters¶
-
river_estimator
Type → base.Classifier
Methods¶
fit
Fits to an entire dataset contained in memory.
Parameters
- X
- y
Returns
self
get_metadata_routing
Get metadata routing of this object.
Please check :ref:User Guide <metadata_routing> on how the routing mechanism works.
Returns
MetadataRequest
get_params
Get parameters for this estimator.
Parameters
- deep — defaults to
True
Returns
dict
partial_fit
Fits incrementally on a portion of a dataset.
Parameters
- X
- y
- classes — defaults to
None
Returns
self
predict
Predicts the target of an entire dataset contained in memory.
Parameters
- X
Returns
Predicted target values for each row of X.
predict_proba
Predicts the target probability of an entire dataset contained in memory.
Parameters
- X
Returns
Predicted target values for each row of X.
score
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
Parameters
- X
- y
- sample_weight — defaults to
None
Returns
float
set_params
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as :class:~sklearn.pipeline.Pipeline). The latter have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object.
Parameters
- params
Returns
estimator instance
set_partial_fit_request
Request metadata passed to the partial_fit method.
Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works. The options for each parameter are: - True: metadata is requested, and passed to partial_fit if provided. The request is ignored if metadata is not provided. - False: metadata is not requested and the meta-estimator will not pass it to partial_fit. - None: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - str: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.
Parameters
- classes — Union[bool, NoneType, str] — defaults to
$UNCHANGED$
Returns
River2SKLClassifier: object
set_score_request
Request metadata passed to the score method.
Note that this method is only relevant if enable_metadata_routing=True (see :func:sklearn.set_config). Please see :ref:User Guide <metadata_routing> on how the routing mechanism works. The options for each parameter are: - True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided. - False: metadata is not requested and the meta-estimator will not pass it to score. - None: metadata is not requested, and the meta-estimator will raise an error if the user provides it. - str: metadata should be passed to the meta-estimator with this given alias instead of the original name. The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others. .. versionadded:: 1.3 .. note:: This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a :class:~sklearn.pipeline.Pipeline. Otherwise it has no effect.
Parameters
- sample_weight — Union[bool, NoneType, str] — defaults to
$UNCHANGED$
Returns
River2SKLClassifier: object