LinearRegression¶
Linear regression.
This estimator supports learning with mini-batches. On top of the single instance methods, it provides the following methods: learn_many, predict_many, predict_proba_many. Each method takes as input a pandas.DataFrame where each column represents a feature.
It is generally a good idea to scale the data beforehand in order for the optimizer to converge. You can do this online with a preprocessing.StandardScaler.
Parameters¶
-
optimizer
Type → optim.base.Optimizer | None
Default →
NoneThe sequential optimizer used for updating the weights. Note that the intercept updates are handled separately.
-
loss
Type → optim.losses.RegressionLoss | None
Default →
NoneThe loss function to optimize for.
-
l2
Default →
0.0Amount of L2 regularization used to push weights towards 0. For now, only one type of penalty can be used. The joint use of L1 and L2 is not explicitly supported.
-
l1
Default →
0.0Amount of L1 regularization used to push weights towards 0. For now, only one type of penalty can be used. The joint use of L1 and L2 is not explicitly supported.
-
intercept_init
Default →
0.0Initial intercept value.
-
intercept_lr
Type → optim.base.Scheduler | float
Default →
0.01Learning rate scheduler used for updating the intercept. A
optim.schedulers.Constantis used if afloatis provided. The intercept is not updated when this is set to 0. -
clip_gradient
Default →
1000000000000.0Clips the absolute value of each gradient value.
-
initializer
Type → optim.base.Initializer | None
Default →
NoneWeights initialization scheme.
Attributes¶
-
weights (dict)
The current weights.
Examples¶
from river import datasets
from river import evaluate
from river import linear_model
from river import metrics
from river import preprocessing
dataset = datasets.TrumpApproval()
model = (
preprocessing.StandardScaler() |
linear_model.LinearRegression(intercept_lr=.1)
)
metric = metrics.MAE()
evaluate.progressive_val_score(dataset, model, metric)
MAE: 0.558735
model['LinearRegression'].intercept
35.617670
You can call the debug_one method to break down a prediction. This works even if the
linear regression is part of a pipeline.
x, y = next(iter(dataset))
report = model.debug_one(x)
print(report)
0. Input
--------
gallup: 43.84321 (float)
ipsos: 46.19925 (float)
morning_consult: 48.31875 (float)
ordinal_date: 736389 (int)
rasmussen: 44.10469 (float)
you_gov: 43.63691 (float)
<BLANKLINE>
1. StandardScaler
-----------------
gallup: 1.18810 (float)
ipsos: 2.10348 (float)
morning_consult: 2.73545 (float)
ordinal_date: -1.73032 (float)
rasmussen: 1.26872 (float)
you_gov: 1.48391 (float)
<BLANKLINE>
2. LinearRegression
-------------------
Name Value Weight Contribution
Intercept 1.00000 35.61767 35.61767
ipsos 2.10348 0.62689 1.31866
morning_consult 2.73545 0.24180 0.66144
gallup 1.18810 0.43568 0.51764
rasmussen 1.26872 0.28118 0.35674
you_gov 1.48391 0.03123 0.04634
ordinal_date -1.73032 3.45162 -5.97242
<BLANKLINE>
Prediction: 32.54607
Methods¶
debug_one
Debugs the output of the linear regression.
Parameters
- x — 'dict'
- decimals — 'int' — defaults to
5
Returns
str: A table which explains the output.
learn_many
Update the model with a mini-batch of features X and real-valued targets y.
Parameters
- X — 'pd.DataFrame'
- y — 'pd.Series'
- w — 'float | pd.Series' — defaults to
1
learn_one
Fits to a set of features x and a real-valued target y.
Parameters
- x — 'dict[base.typing.FeatureName, Any]'
- y — 'base.typing.RegTarget'
- w — defaults to
1.0
predict_many
Predict the outcome for each given sample.
Parameters
- X
Returns
The predicted outcomes.
predict_one
Predict the output of features x.
Parameters
- x
Returns
The prediction.