PyTorch2RiverRegressor¶
Compatibility layer from PyTorch to River for regression.
Parameters¶
-
build_fn
-
loss_fn (Type[torch.nn.modules.loss._Loss])
-
optimizer_fn (Type[torch.optim.optimizer.Optimizer])
-
learning_rate – defaults to
0.001
-
net_params
Examples¶
>>> from river import compat
>>> from river import datasets
>>> from river import evaluate
>>> from river import metrics
>>> from river import preprocessing
>>> from torch import nn
>>> from torch import optim
>>> _ = torch.manual_seed(0)
>>> dataset = datasets.TrumpApproval()
>>> def build_torch_mlp_regressor(n_features):
... net = nn.Sequential(
... nn.Linear(n_features, 5),
... nn.Linear(5, 5),
... nn.Linear(5, 5),
... nn.Linear(5, 5),
... nn.Linear(5, 1)
... )
... return net
...
>>> model = compat.PyTorch2RiverRegressor(
... build_fn= build_torch_mlp_regressor,
... loss_fn=nn.MSELoss,
... optimizer_fn=optim.Adam,
... )
>>> metric = metrics.MAE()
>>> metric = evaluate.progressive_val_score(dataset=dataset, model=model, metric=metric)
>>> round(metric.get(), 2)
78.98
Methods¶
clone
Return a fresh estimator with the same parameters.
The clone has the same parameters but has not been updated with any data. This works by looking at the parameters from the class signature. Each parameter is either - recursively cloned if it's a River classes. - deep-copied via copy.deepcopy
if not. If the calling object is stochastic (i.e. it accepts a seed parameter) and has not been seeded, then the clone will not be idempotent. Indeed, this method's purpose if simply to return a new instance with the same input parameters.
learn_many
Update the model with a mini-batch of features X
and boolean targets y
.
Parameters
- X (pandas.core.frame.DataFrame)
- y (pandas.core.series.Series)
- kwargs
Returns
self
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x (dict)
- y (Union[bool, str, int])
Returns
Regressor: self
predict_many
Predict the outcome for each given sample.
Parameters
- X (pandas.core.frame.DataFrame)
Returns
Series: The predicted outcomes.
predict_one
Predicts the target value of a set of features x
.
Parameters
- x
Returns
The prediction.