ADWINBaggingClassifier¶
ADWIN Bagging classifier.
ADWIN Bagging 1 is the online bagging method of Oza and Russell 2 with the addition of the ADWIN
algorithm as a change detector. If concept drift is detected, the worst member of the ensemble (based on the error estimation by ADWIN) is replaced by a new (empty) classifier.
Parameters¶
-
model (base.Classifier)
The classifier to bag.
-
n_models β defaults to
10
The number of models in the ensemble.
-
seed (int) β defaults to
None
Random number generator seed for reproducibility.
Attributes¶
- models
Examples¶
>>> from river import datasets
>>> from river import ensemble
>>> from river import evaluate
>>> from river import linear_model
>>> from river import metrics
>>> from river import optim
>>> from river import preprocessing
>>> dataset = datasets.Phishing()
>>> model = ensemble.ADWINBaggingClassifier(
... model=(
... preprocessing.StandardScaler() |
... linear_model.LogisticRegression()
... ),
... n_models=3,
... seed=42
... )
>>> metric = metrics.F1()
>>> evaluate.progressive_val_score(dataset, model, metric)
F1: 87.83%
Methods¶
append
S.append(value) -- append value to the end of the sequence
Parameters
- item
clear
S.clear() -> None -- remove all items from S
copy
count
S.count(value) -> integer -- return number of occurrences of value
Parameters
- item
extend
S.extend(iterable) -- extend sequence by appending elements from the iterable
Parameters
- other
index
S.index(value, [start, [stop]]) -> integer -- return first index of value. Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
Parameters
- item
- args
insert
S.insert(index, value) -- insert value before index
Parameters
- i
- item
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x
- y
Returns
self
pop
S.pop([index]) -> item -- remove and return item at index (default last). Raise IndexError if list is empty or index is out of range.
Parameters
- i β defaults to
-1
predict_one
Predict the label of a set of features x
.
Parameters
- x (dict)
Returns
typing.Union[bool, str, int, NoneType]: The predicted label.
predict_proba_one
Averages the predictions of each classifier.
Parameters
- x
remove
S.remove(value) -- remove first occurrence of value. Raise ValueError if the value is not present.
Parameters
- item
reverse
S.reverse() -- reverse IN PLACE
sort
References¶
-
Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard GavaldΓ . "New ensemble methods for evolving data streams." In 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009. ↩
-
Oza, N., Russell, S. "Online bagging and boosting." In: Artificial Intelligence and Statistics 2001, pp. 105β112. Morgan Kaufmann, 2001. ↩