SKL2RiverRegressor¶
Compatibility layer from scikit-learn to River for regression.
Parameters¶
-
estimator ('sklearn_base.BaseEstimator')
A scikit-learn transformer which has a
partial_fit
method.
Examples¶
>>> from river import compat
>>> from river import evaluate
>>> from river import metrics
>>> from river import preprocessing
>>> from river import stream
>>> from sklearn import linear_model
>>> from sklearn import datasets
>>> dataset = stream.iter_sklearn_dataset(
... dataset=datasets.load_diabetes(),
... shuffle=True,
... seed=42
... )
>>> scaler = preprocessing.StandardScaler()
>>> sgd_reg = compat.convert_sklearn_to_river(linear_model.SGDRegressor())
>>> model = scaler | sgd_reg
>>> metric = metrics.MAE()
>>> evaluate.progressive_val_score(dataset, model, metric)
MAE: 84.519485
Methods¶
learn_many
learn_one
Fits to a set of features x
and a real-valued target y
.
Parameters
- x
- y
Returns
self
predict_many
predict_one
Predict the output of features x
.
Parameters
- x
Returns
The prediction.