Skip to content

StatisticRegressor

Dummy regressor that uses a univariate statistic to make predictions.

Parameters

  • statistic (river.stats.base.Univariate)

Examples

>>> from pprint import pprint
>>> from river import dummy
>>> from river import stats

>>> sentences = [
...     ('glad happy glad', 3),
...     ('glad glad joyful', 3),
...     ('glad pleasant', 2),
...     ('miserable sad glad', -3)
... ]

>>> model = dummy.StatisticRegressor(stats.Mean())

>>> for sentence, score in sentences:
...     model = model.learn_one(sentence, score)

>>> new_sentence = 'glad sad miserable pleasant glad'
>>> model.predict_one(new_sentence)
1.25

Methods

learn_one

Fits to a set of features x and a real-valued target y.

Parameters

  • x (dict)
  • y (numbers.Number)

Returns

Regressor: self

predict_one

Predict the output of features x.

Parameters

  • x (dict)

Returns

Number: The prediction.