Skip to content

PARegressor

Passive-aggressive learning for regression.

Parameters

  • C – defaults to 1.0

  • mode – defaults to 1

  • eps – defaults to 0.1

  • learn_intercept – defaults to True

Examples

The following example is taken from this blog post.

>>> from river import linear_model
>>> from river import metrics
>>> from river import stream
>>> import numpy as np
>>> from sklearn import datasets

>>> np.random.seed(1000)
>>> X, y = datasets.make_regression(n_samples=500, n_features=4)

>>> model = linear_model.PARegressor(
...     C=0.01,
...     mode=2,
...     eps=0.1,
...     learn_intercept=False
... )
>>> metric = metrics.MAE() + metrics.MSE()

>>> for xi, yi in stream.iter_array(X, y):
...     y_pred = model.predict_one(xi)
...     model = model.learn_one(xi, yi)
...     metric = metric.update(yi, y_pred)

>>> print(metric)
MAE: 9.809402, MSE: 472.393532

Methods

learn_one

Fits to a set of features x and a real-valued target y.

Parameters

  • x
  • y

Returns

self

predict_one

Predict the output of features x.

Parameters

  • x

Returns

The prediction.

References