Skip to content

BalancedAccuracy

Balanced accuracy.

Balanced accuracy is the average of recall obtained on each class. It is used to deal with imbalanced datasets in binary and multi-class classification problems.

Parameters

  • cm (river.metrics.confusion.ConfusionMatrix) – defaults to None

    This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.

Attributes

  • bigger_is_better

    Indicate if a high value is better than a low one or not.

  • requires_labels

    Indicates if labels are required, rather than probabilities.

  • works_with_weights

    Indicate whether the model takes into consideration the effect of sample weights

Examples

>>> from river import metrics
>>> y_true = [True, False, True, True, False, True]
>>> y_pred = [True, False, True, True, True, False]

>>> metric = metrics.BalancedAccuracy()
>>> for yt, yp in zip(y_true, y_pred):
...     metric = metric.update(yt, yp)

>>> metric
BalancedAccuracy: 62.50%

>>> y_true = [0, 1, 0, 0, 1, 0]
>>> y_pred = [0, 1, 0, 0, 0, 1]
>>> metric = metrics.BalancedAccuracy()
>>> for yt, yp in zip(y_true, y_pred):
...     metric = metric.update(yt, yp)

>>> metric
BalancedAccuracy: 62.50%

Methods

get

Return the current value of the metric.

is_better_than
revert

Revert the metric.

Parameters

  • y_true
  • y_pred
  • sample_weight – defaults to 1.0
update

Update the metric.

Parameters

  • y_true
  • y_pred
  • sample_weight – defaults to 1.0
works_with

Indicates whether or not a metric can work with a given model.

Parameters

  • model (river.base.estimator.Estimator)