MultiFBeta¶
Multi-class F-Beta score with different betas per class.
The multiclass F-Beta score is the arithmetic average of the binary F-Beta scores of each class. The mean can be weighted by providing class weights.
Parameters¶
-
betas
Weight of precision in the harmonic mean of each class.
-
weights
Class weights. If not provided then uniform weights will be used.
-
cm – defaults to
None
This parameter allows sharing the same confusion matrix between multiple metrics. Sharing a confusion matrix reduces the amount of storage and computation time.
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
requires_labels
Indicates if labels are required, rather than probabilities.
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Examples¶
>>> from river import metrics
>>> y_true = [0, 1, 2, 2, 2]
>>> y_pred = [0, 0, 2, 2, 1]
>>> metric = metrics.MultiFBeta(
... betas={0: 0.25, 1: 1, 2: 4},
... weights={0: 1, 1: 1, 2: 2}
... )
>>> for yt, yp in zip(y_true, y_pred):
... print(metric.update(yt, yp))
MultiFBeta: 100.00%
MultiFBeta: 25.76%
MultiFBeta: 62.88%
MultiFBeta: 62.88%
MultiFBeta: 46.88%
Methods¶
get
Return the current value of the metric.
is_better_than
revert
Revert the metric.
Parameters
- y_true
- y_pred
- sample_weight – defaults to
1.0
update
Update the metric.
Parameters
- y_true
- y_pred
- sample_weight – defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model (river.base.estimator.Estimator)