ExactMatch¶
Exact match score.
This is the most strict multi-label metric, defined as the number of samples that have all their labels correctly classified, divided by the total number of samples.
Attributes¶
-
bigger_is_better
Indicate if a high value is better than a low one or not.
-
requires_labels
-
works_with_weights
Indicate whether the model takes into consideration the effect of sample weights
Examples¶
>>> from river import metrics
>>> y_true = [
... {0: False, 1: True, 2: True},
... {0: True, 1: True, 2: False},
... {0: True, 1: True, 2: False},
... ]
>>> y_pred = [
... {0: True, 1: True, 2: True},
... {0: True, 1: False, 2: False},
... {0: True, 1: True, 2: False},
... ]
>>> metric = metrics.multioutput.ExactMatch()
>>> for yt, yp in zip(y_true, y_pred):
... metric = metric.update(yt, yp)
>>> metric
ExactMatch: 33.33%
Methods¶
get
Return the current value of the metric.
is_better_than
revert
Revert the metric.
Parameters
- y_true (Dict[Union[str, int], Union[bool, str, int]])
- y_pred (Union[Dict[Union[str, int], Union[bool, str, int]], Dict[Union[str, int], Dict[Union[bool, str, int], float]]])
- sample_weight – defaults to
1.0
update
Update the metric.
Parameters
- y_true (Dict[Union[str, int], Union[bool, str, int]])
- y_pred (Union[Dict[Union[str, int], Union[bool, str, int]], Dict[Union[str, int], Dict[Union[bool, str, int], float]]])
- sample_weight – defaults to
1.0
works_with
Indicates whether or not a metric can work with a given model.
Parameters
- model