SGTClassifier¶
Stochastic Gradient Tree1 for binary classification.
Binary decision tree classifier that minimizes the binary cross-entropy to guide its growth.
Stochastic Gradient Trees (SGT) directly minimize a loss function to guide tree growth and update their predictions. Thus, they differ from other incrementally tree learners that do not directly optimize the loss, but data impurity-related heuristics.
Parameters¶
-
delta (float) – defaults to
1e-07
Define the significance level of the F-tests performed to decide upon creating splits or updating predictions.
-
grace_period (int) – defaults to
200
Interval between split attempts or prediction updates.
-
init_pred (float) – defaults to
0.0
Initial value predicted by the tree.
-
max_depth (Optional[int]) – defaults to
None
The maximum depth the tree might reach. If set to
None
, the trees will grow indefinitely. -
lambda_value (float) – defaults to
0.1
Positive float value used to impose a penalty over the tree's predictions and force them to become smaller. The greater the lambda value, the more constrained are the predictions.
-
gamma (float) – defaults to
1.0
Positive float value used to impose a penalty over the tree's splits and force them to be avoided when possible. The greater the gamma value, the smaller the chance of a split occurring.
-
nominal_attributes (Optional[List]) – defaults to
None
List with identifiers of the nominal attributes. If None, all features containing numbers are assumed to be numeric.
-
feature_quantizer (river.tree.splitter.base.Quantizer) – defaults to
None
The algorithm used to quantize numeric features. Either a static quantizer (as in the original implementation) or a dynamic quantizer can be used. The correct choice and setup of the feature quantizer is a crucial step to determine the performance of SGTs. Feature quantizers are akin to the attribute observers used in Hoeffding Trees. By default, an instance of
tree.splitter.StaticQuantizer
(with default parameters) is used if this parameter is not set.
Attributes¶
-
height
-
n_branches
-
n_leaves
-
n_node_updates
-
n_nodes
-
n_observations
-
n_splits
Examples¶
>>> from river import datasets
>>> from river import evaluate
>>> from river import metrics
>>> from river import tree
>>> dataset = datasets.Phishing()
>>> model = tree.SGTClassifier(
... feature_quantizer=tree.splitter.StaticQuantizer(
... n_bins=32, warm_start=10
... )
... )
>>> metric = metrics.Accuracy()
>>> evaluate.progressive_val_score(dataset, model, metric)
Accuracy: 82.24%
Methods¶
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x (dict)
- y (Union[bool, str, int])
- w – defaults to
1.0
Returns
Classifier: self
predict_one
Predict the label of a set of features x
.
Parameters
- x (dict)
- kwargs
Returns
typing.Union[bool, str, int, NoneType]: The predicted label.
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x (dict)
Returns
typing.Dict[typing.Union[bool, str, int], float]: A dictionary that associates a probability which each label.
References¶
-
Gouk, H., Pfahringer, B., & Frank, E. (2019, October). Stochastic Gradient Trees. In Asian Conference on Machine Learning (pp. 1094-1109). ↩