StackingClassifier¶
Stacking for binary classification.
Parameters¶
-
models
Type → list[base.Classifier]
-
meta_classifier
Type → base.Classifier
-
include_features
Default →
True
Indicates whether or not the original features should be provided to the meta-model along with the predictions from each model.
Attributes¶
- models
Examples¶
from river import compose
from river import datasets
from river import ensemble
from river import evaluate
from river import linear_model as lm
from river import metrics
from river import preprocessing as pp
dataset = datasets.Phishing()
model = compose.Pipeline(
('scale', pp.StandardScaler()),
('stack', ensemble.StackingClassifier(
[
lm.LogisticRegression(),
lm.PAClassifier(mode=1, C=0.01),
lm.PAClassifier(mode=2, C=0.01),
],
meta_classifier=lm.LogisticRegression()
))
)
metric = metrics.F1()
evaluate.progressive_val_score(dataset, model, metric)
F1: 88.14%
Methods¶
learn_one
Update the model with a set of features x
and a label y
.
Parameters
- x
- y
Returns
self
predict_one
Predict the label of a set of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
base.typing.ClfTarget | None: The predicted label.
predict_proba_one
Predict the probability of each label for a dictionary of features x
.
Parameters
- x
Returns
A dictionary that associates a probability which each label.