MultiClassEncoder¶
Convert a multi-label task into multiclass.
Assigns a class to each unique combination of labels, and proceeds with training the supplied multi-class classifier.
The transformation is done by converting the label set, which could be seen as a binary number, into an integer representing a class. At prediction time, the predicted integer is converted back to a binary number which is the predicted label set.
Parameters¶
-
model
Type → base.Classifier
The classifier used for learning.
Examples¶
from river import forest
from river import metrics
from river import multioutput
from river.datasets import synth
dataset = synth.Logical(seed=42, n_tiles=100)
model = multioutput.MultiClassEncoder(
model=forest.ARFClassifier(seed=7)
)
metric = metrics.multioutput.MicroAverage(metrics.Jaccard())
for x, y in dataset:
y_pred = model.predict_one(x)
y_pred = {k: y_pred.get(k, 0) for k in y}
metric = metric.update(y, y_pred)
model = model.learn_one(x, y)
metric
MicroAverage(Jaccard): 95.10%
Methods¶
learn_one
Update the model with a set of features x
and the labels y
.
Parameters
- x — 'dict'
- y — 'dict[FeatureName, bool]'
Returns
MultiLabelClassifier: self
predict_one
Predict the labels of a set of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
dict[FeatureName, bool]: The predicted labels.
predict_proba_one
Predict the probability of each label appearing given dictionary of features x
.
Parameters
- x — 'dict'
- kwargs
Returns
dict[FeatureName, dict[bool, float]]: A dictionary that associates a probability which each label.